◆ 研究与开发 ◆

丙硫菌唑的合成研究

马艺超,张蒙萌,申国富,汤保贺,王 宽,程绎南*,李洪连

(河南农业大学 植保学院,郑州 450002)

摘要:以邻氯苄基氯、2-氯-1-(1-氯环丙基)乙酮和水合肼等为主要原料,通过格氏反应、肼的取代、环化和氧化等4步反应合成了丙硫菌唑。目标产物及主要中间体经NMR确认,合成总收率达53%,产品质量分数为95%。该工艺具有反应条件相对温和,反应溶剂易于回收和产品质量好等特点,较适合工业化开发。

关键词: 丙硫菌唑: 合成: 格氏反应: 取代肼

中图分类号:TQ 455.4+7 文献标志码:A doi:10.3969/j.issn.1671-5284.2017.04.004

Study on the Synthesis of Prothioconazole

MA Yi-chao, ZHANG Meng-meng, SHEN Guo-fu, TANG Bao-he, WANG Kuan, CHENG Yi-nan*, LI Hong-lian (College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China)

Abstract: Prothioconazole was prepared successfully with 2-chlorobenzyl chloride, 2-chloro-1-(1-chlorocyclopropyl) ethanone and hydrazine hydrate, via Grignard reaction, hydrazine substitution, cyclization and oxidation. The total yield of the four synthetic steps reached 53%, and the product purity reached 95%. The procedure showed several advantages such as abundant raw materials, mild reaction conditions, easily recycled reaction solvents, easily purified intermediates and high product quality. It was suitable for industrial development.

Key words: prothioconazole; synthesis; Grignard reaction; substituted hydrazine

丙 硫 菌 唑 (prothioconazole) 分 子 式 为 $C_{14}H_{15}Cl_2N_3OS$ 相对分子质量344.26 ,化学名2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基丙基]-2H-1,2,4-三唑-3(4H)-硫酮 ,CAS登录号[178928-70-6]。其为白色或淡黄色固体 ,熔点为138~139℃。丙硫菌唑是拜耳公司于2004年开发上市的新型三唑硫酮类杀菌剂[1]。其具有广谱杀菌活性 ,通过抑制甾醇前体羊毛甾醇的脱甲基化作用 ,干扰甾醇的生物合成 ,从而发挥杀菌活性 ^[2]。丙硫菌唑内吸性良好 ,由于作用机理独特 ,其具有优异的保护、治疗和铲除活性 , 主要用于禾谷类作物 ,如小麦、大麦、水稻、花生、油菜及豆类等 防治众多病害。

由于其合成步骤长,难度大,丙硫菌唑在国内的开发与推广应用尚处于初期阶段。本文借鉴国

内、外关于丙硫菌唑合成的相关文献报道,选择了如图1所示的合成工艺路线[3-6]。

图 1 丙硫菌唑合成工艺

收稿日期:2017-04-21 ;修回日期:2017-05-08

基金项目:河南省科技攻关计划项目(172102110042) 公益性行业(农业)科研专项(201503112) 河南省高等学校重点项目(16A210006)

作者简介:马艺超(1992—) 男 河南省洛阳市人 硕士研究生 从事农药开发与合成研究

通讯作者:程绎南(1970—) 男,郑州市人 副教授 博士,从事农药、医药工程研究与教学。E-mail chyn212@aliyun.com

该合成工艺具有原料易得,反应条件温和,溶剂能够有效回收套用,中间体易于分离和纯化等特点,总收率达到53%,具有较好的工业应用前景。

1 实验部分

1.1 实验仪器和试剂

2-氯-1-(1-氯环丙基)乙酮 ,购自萨恩化学技术 (上海)有限公司 ;邻氯苄基氯 ,购自郑州阿尔法试 剂公司。所有试剂未经纯化直接使用。用青岛海洋 化工厂生产的硅胶GF254与羧甲基纤维素钠水溶液 (质量分数3.5‰)制备薄层色谱板。

实验仪器: H NMR及¹³C NMR用Bruker DPX-400型超导核磁共振仪测定 CDCl₃或DMSO为溶剂, TMS为内标: GC211A气相色谱仪: GC-MS 6800气相色谱质谱联用仪: Agilent1200液相色谱仪。

1.2 实验方法

1.2.1 1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇(中间体1)的合成

将5.3 g(0.22 mol)镁屑投入到盛有50 mL无水 叔丁基甲醚的反应瓶中 ,加入少量的碘和二溴乙烷 ,再加入1 g邻氯苄基氯 加热至回流。缓慢滴入溶有32.2 g(0.2 mol)邻氯苄基氯的100 mL叔丁基甲醚溶液 ,邻氯苄基氯的叔丁基甲醚溶液滴加完毕后 ,继续回流反应2 h ,得到灰色格氏试剂悬浮液。将得到的格氏试剂悬浮液降温至10℃以下 ,缓慢加入含有24.5 g(0.16 mol)2-氯-1-(1-氯环丙基)乙酮的叔丁基甲醚溶液(50 mL) ,加毕将反应体系升至室温继续反应3 h。用饱和氯化铵水溶液淬灭反应 ,并分出有机层 ,用叔丁基甲醚萃取水相2次 ,合并有机相 ,有机相干燥浓缩后得黄色液体1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇(中间体1)41 g ,质量分数86% ,收率79%。

 1 H NMR (400 MHz ,CDCl₃)δ :7.46-7.48 (m, 1H, Ar-H), 7.35-7.38 (d, 1H, Ar-H), 7.19-7.21 (m, 2H, Ar-H), 4.13-4.16 (d, J=11.2 Hz, 1H, CH-Cl), 3.71-3.74 (d, J=11.6 Hz, 1H, CH-Cl), 3.65-3.68 (d, J=14.4 Hz, 1H, Ar-CH), 3.14-3.18 (d, J=14 Hz, 1H, Ar-CH), 2.41 (s, 1H, OH), 0.84-1.25 (m, 4H, CH₂CH₂) $_{\circ}$

1.2.2 2-(1-氯环丙基)-1-(2-氯苯基)-3-肼基-2-丙醇 (中间体**2**)的合成

向装有回流冷凝管的 $250 \, \text{mL反应瓶中投入} 32.5 \, \text{g(}\,0.1\,\,\text{mol)} 1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇 (中间体<math>1$)和 $50\,\,\text{mL}$ 水,然后加入 $40\,\,\text{g(}\,1.0\,\,\text{mol)} 80\%$ 水合肼,加热回流反应 $10\,\,\text{h}$,当1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇转化完全后,反应液降至室

温,分层。有机相水洗2次,得到黏稠状液体(中间体 2)29.6 g,质量分数88%,收率95%。该中间体无需进 一步纯化,直接用于下步反应。

1.2.3 2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基丙基] -1,2,4-三唑烷-3-硫酮(中间体**3**)的合成

向盛有100 mL甲苯的250 mL反应瓶中,投入25 g(80 mmol)2-(1-氯环丙基)-1-(2-氯苯基)-3-肼基-2-丙醇,室温搅拌下加入6.0 g(80 mmol)40%甲醛水溶液 0.5 h后,加入6.1 g(80 mmol)硫氰酸胺,继续反应<math>5 h,待原料转化完毕后分层,有机相用水洗2次,干燥浓缩后得固体2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基丙基]-1,2,4-三唑烷-3-硫酮(中间体3)26 g,质量分数81%,收率76%。分析样品由簿层色谱分离,熔点 $151\sim153\%$ 。

¹H NMR(400 MHz, CDCl₃)δ 7.54-7.56 (d, J=6.4 Hz, 1H, Ar-H), 7.35-7.36 (d, J=7.2 Hz, 1H, Ar-H), 7.19-7.21 (m, 2H, Ar-H), 6.43 (s, 1H, S=C-NH), 5.10-5.15 (t, J=10.8 Hz, J=10.4 Hz, NH), 4.47-4.60 (m, 3H, OH and Ar-CH₂), 4.16 (s, 2H, NCH₂N), 3.61-3.64 (d, J=14 Hz, 1H, Ar-H), 3.06-3.09 (d, J=14 Hz, 1H, Ar-H), 0.86-1.25 (m, 4H, CH₂CH₂) $_{\circ}$

¹³C NMR(100 MHz, CDCl₃)δ:181.7 (1C, C=S), 135.1 (1C, phenyl), 134.2 (1C, phenyl), 133.5 (1C, phenyl), 129.3 (1C, phenyl), 128.1 (1C, phenyl), 126.3 (1C, phenyl), 76.9 (1C, C-OH), 61.6 (1C, N-CH₂-N), 54.4 (1C, Cl-C), 46.2 (1C, N-C), 38.2 (1C, phenyl-C), 11.2 (1C, CH₂), 11.1(1C, CH₂)_☉

1.2.4 丙硫菌唑的合成

将上步合成的20 g(50 mmol)2-[2-(1-氯环丙基) -3-(2-氯苯基)-2-羟基丙基]-1,2,4-三唑烷-3-硫酮投入盛有50 mL乙腈的250 mL反应瓶中,在室温搅拌下加入30 g含有50 mmol \mathbb{Z} 氯化铁的水溶液,然后再加入5.7 g含有50 mmol \mathbb{Z} 双氧水的水溶液, 室温继续搅拌6 h,直到转化完全。加入100 mL乙酸乙酯萃取,有机相用30 mL饱和亚硫酸钠水溶液洗涤2次,干燥、浓缩,冷却后析出淡黄色固体目标物16.8 g,质量分数95%,收率93%。分析样品由簿层色谱分离,熔点137~138℃(文献值138~139℃ \mathbb{Z})。

 1 H NMR(400 MHz, CDCl₃)δ 7.86 (s, 1H, N=CH-N), 7.53-7.55 (d, J=6.8 Hz, 1H, Ar-H), 7.36-7.38 (d, J=7.2 Hz, 1H, Ar-H), 7.20-7.23 (m, 2H, Ar-H), 4.77-4.81 (d, J=14.4 Hz, 1H, CH-N), 4.47-4.51 (d, J=14.8 Hz, 1H, CH-N), 4.24 (s, 1H, OH), 3.59-3.63 (d, J=14 Hz, 1H, Ar-CH), 3.16-3.19 (d, J=14 Hz, 1H, Ar-CH), 0.76-0.94 (m, 4H, CH₂CH₂) $_{\odot}$

¹³C NMR (100 MHz, CDCl₃)δ :165.6 (1C, C=S), 137.4 (1C, N-C=N), 135.2 (1C, phenyl), 133.9 (1C, phenyl), 133.5

(1C, phenyl), 129.5 (1C, phenyl), 128.3 (1C, phenyl), 126.4 (1C, phenyl), 77.2 (1C, C-OH), 53.9 (1C, Cl-C), 45.6 (1C, N-C), 38.3 (1C, phenyl-C), 11.2 (1C, CH₂), 11.1 (1C, CH₂)_o

2 结果与讨论

2.1 1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇的合成讨论

在1-氯-2-(1-氯环丙基)-3-(2-氯苯基)-2-丙醇的 合成中,由于邻氯苄基氯的苄基位具有较高的化学 反应活性,以至于在格氏试剂的反应中时常伴有苄 基位偶联产物的生成 因此邻氯苄基格氏试剂的合 成是该反应的关键步骤。偶联反应的发生存在2种 可能:一种是所形成的格氏试剂在氧化剂的作用下 发生自身偶联图;另一种是所形成的格氏试剂与另 一分子邻氯苄基氯反应而得。前者需要在无氧条件 下操作,而后者需要控制格氏试剂的反应活性,如 控制较低的反应温度 选择对格氏试剂具有稳定作 用的反应溶剂等。为此,我们以碘(I2)为引发剂,在 惰性气体(N2)保护下 控制相对较低的反应温度 来 考察不同的反应溶剂对格氏试剂的形成难易及对 偶联反应的影响,反应溶剂包括乙醚、叔丁基甲醚 (MTBE)、四氢呋喃(THF)、MTBE/甲苯和THF/甲苯。 当以乙醚为溶剂时,反应在室温下即可引发,并且 反应的专一性强 反应的收率在95%以上 偶联产物 可以得到有效控制。然而,由于乙醚具有较低的沸 点和爆炸危险性,不适用于规模生产。以叔丁基甲 醚为溶剂时 反应室温下难以引发 但当使用1.和二 溴乙烷作为复合引发剂时 在回流条件下反应可以 引发,反应收率达到79%,偶联产物可以控制在 10%以内图。虽然以叔丁基甲醚为溶剂的反应收率不 及乙醚,但其相对稳定,可以满足规模生产的要求。 以THF为溶剂,反应室温下能够引发,但几乎都生 成了偶联产物。MTBE/甲苯和THF/甲苯2种混合溶 剂体系分别在反应引发和偶联产物的控制方面表 现不够理想。目前比较适应规模生产的反应溶剂 为MTBE。

2.2 2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基 丙基]-1,2,4-三唑烷-3-硫酮的氧化

有文献报道 2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基丙基]-1,2,4-三唑烷-3-硫酮可以通过在氢氧化钾(KOH)及硫(S)的存在下加热通氧来实现向丙硫菌唑的转化^[10]。但有机体系在加热条件下通氧具有一定的危险性,对操作要求较高,同时该步收率也仅有70%左右。以三氯化铁和双氧水为氧化体系,反

应在室温下即可进行 操作简便 收率在90%以上。

3 结论

在综合分析和借鉴国内、外丙硫菌唑合成方法的基础上,设计了丙硫菌唑合成工艺路线,该路线共4步,总收率达到53%。该工艺路线原料价廉易得,反应条件相对温和,反应溶剂容易回收循环利用,中间体易于分离和纯化等,具有较好的工业应用前景。

参考文献

- [1] 关云飞, 孙克, 张敏恒. 丙硫菌唑合成方法述评 [J]. 农药, 2014, 53 (9): 696-698.
- [2] Parker J E, Warrilow A G, Cools H J, et al. Mechanism of Binding of Prothioconazole to Mycosphaerella Graminicola CYP51 Differs from That of Other Azole Antifungals [J]. Applied and Environmental Microbiology, 2011, 77 (4): 1460-1465.
- [3] Thomas H, Udo K, Wolfgang K, et al. Preparation of Benzyl Ketones and an Oxirane: US, 5146001 [P]. 1992-09-08.
- [4] Metzger A, Schade M, Knochel P. LiCl-Mediated Preparation of Highly Functionalized Benzylic Zinc Chlorides [J]. Organic Letters, 2008, 10 (6): 1107-1110.
- [5] 王美娟, 廖道华, 曾仲武, 等. 丙硫菌唑的合成 [J]. 农药, 2009, 48 (3): 172-173; 201.
- [6] Hupperts A, Ruther M, Jautelat M. Method for Production of a Triazolinethione Derivative: WO, 0146158 [P]. 2001-06-28.
- [7] Jautelat M, Erdman D. Process for Preparing Triazolinethione Derivatives: US, 6172236 [P]. 2001-01-09.
- [8] 王哲清. 简述格氏反应 [J]. 中国医药工业杂志, 2012, 43 (4): 311-316.
- [9] Li J, Liao X, Liu H, et al. A New Way to Prepare Grignard Reagent from RX (X=Cl, Br) Using the Mixture of BrCH₂CH₂Br and I₂ as an Initiator [J]. Synthetic Communications, 1999, 29 (6): 1037-1039.
- [10] Jautelat M, Erdman D. Method for Producing Triazolinethion Derivatives: WO, 9918087 [P]. 1999-04-15.

(责任编辑: 顾林玲)

扫一扫下方二维码

微信号: M-pesticide-E 公众号: 现代农药

QQ:906491600 电话:025-86581148 传真:025-86581147

网址: www.agroinfo.com.cn